Gene expression changes in Lewy body disease driven by alpha-synuclein pathology and independent of co-pathologies.

Sophie Ball¹, Madison Reeves¹, Anand Narayan¹, Yuping Song¹, Judy Dunmore¹, Bailey Rawlinson¹, Michael DeTure¹, Dennis W. Dickson^{1,2}, Mercedes Prudencio^{1,2}

Lewy body disease (LBD) is a neurodegenerative disorder marked by cognitive impairments and parkinsonian motor symptoms, which are closely associated with the accumulation of pathological alpha-synuclein in key brain regions. Phosphorylation of alpha-synuclein at serine 129 (pS129) is strongly implicated in disease pathology, with over 90% of alpha-synuclein in Lewy bodies phosphorylated at this site compared to just 4% of alpha-synuclein healthy brains. While copathologies such as tau, amyloid-β, and TDP-43 are frequently observed in LBD, they confound efforts to identify alpha-synuclein-specific molecular changes. Therefore, to better isolate molecular pathways specific to alpha-synuclein pathology, we analyzed brains from LBD cases without significant co-pathologies. We obtained amygdala tissue from neuropathologically confirmed LBD cases (N=41) and matched controls (N=26), evaluating each case for tau, amyloid-β, and TDP-43 pathology. RNA was extracted and sequenced to profile gene expression. and an immunoassay was developed to quantify pS129 alpha-synuclein burden. The LBD cohort included brainstem-predominant (N=5), transitional (N=18), and diffuse (N=18) subtypes. Histopathological evaluation confirmed low Braak and Thal stages, indicating minimal tau and amyloid-β pathology. Importantly, there was no evidence of TDP-43 dysfunction, as assessed by both immunoassay for insoluble phosphorylated TDP-43 and RNA-level analysis of cryptic exon inclusion in TDP-43 target genes. Quantification of pS129 burden is ongoing, and we aim to correlate these levels with differential gene expression to identify alpha-synuclein-specific molecular alterations. This approach will help uncover mechanisms intrinsic to LBD and may inform the development of targeted therapeutic strategies.

Sophie Ball

Department of Neuroscience research Mayo Clinic Jacksonville, Florida, USA Email: ball.sophie@mayo.edu

¹ Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.

² Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA