A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity Benjamin L.L. Clayton¹, James D. Kristell¹, Kevin C. Allan¹, Erin F. Cohn¹, Molly Karl², Andrew D. Jerome^{3,4}, Eric Garrison², Yuka Maeno-Hikichi¹, Annalise M. Sturno¹, Alexis Kerr¹, H. Elizabeth Shick¹, Jesse A. Sepeda^{3,4}, Eric C. Freundt⁵, Andrew R. Sas^{3,4}, Benjamin M. Segal^{3,4}, Robert H. Miller², and Paul J. Tesar¹.

¹Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA. ²Department of Anatomy and Regenerative Biology, George Washington University School of Medicine, Washington D.C., USA. ³Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA. ⁴Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA. ⁵Department of Biology, The University of Tampa, Tampa, Florida, USA.

Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.

Sponsored By: grant from NMSS TA-2105-37619

Presenter Name and contact information:

Benjamin L.L. Clayton, Ph.D., Assistant Professor Institute for Glial Sciences Department of Genetics and Genome Sciences Case Western Reserve University School of Medicine Cleveland, OH, USA Email: benjamin.clayton@case.edu