Immuno- and serological evaluation of neurodegeneration after spinal cord injury (SCI) and the potential impact of high oxygen therapy

David D Fuller^{1,2,3} Anna F Fusco^{2, 3}, Kyle Deegan³, Gabriel Igelesias^{1,3}, Sabhya Rana^{1,2,3}, Sruti Rayaprolu⁴, Maya M MacIntyre³, Marda Jorgensen⁵, Gerry Shaw^{2,5,6}

Several epitopes on the neurofilament light chain (NF-L) are exposed by degeneration induced proteolysis and are specifically recognized by Degenotag™ type antibodies, novel reagents for visualizing neurodegeneration (PMID 37091583). We used a rat cervical (C4) contusion SCI model to compare the time course of NF-L release into serum (Quanterix[®] Simoa™ NF-L assay) with spinal cord staining quantified with the NF-L Degenotag™ MCA-6H63 antibody (RRID Ab 2923484). Spinal cords and serum were collected at intervals from 1 hr - 10 days post-SCI. Serum NF-L and spinal MCA-6H63 staining peaked at 1-3 days. Serum NF-L values correlated with the number of MCA-6H63 positive axons (R²=0.739; p<0.0001). We also examined the impact of hyperoxia on the injured spinal cord. We previously demonstrated that hyperbaric oxygen delivered at acute (min-hrs) through sub-acute (days) times after SCI can partially mitigate neuronal loss (PMID: 35152735). Subsequent work suggested that normobaric oxygen may have similar impact (PMID: 38110993). Thus, adult rats were treated with normobaric hyperoxia (100% O₂, 2 hours) within 20 min of C4 contusion and daily for 7 days. Cords were harvested on day 14 and analyzed ± 2 mm from the lesion epicenter by staining with an antibody to neuronal nuclear protein (NeuN). Hyperoxia treated rats (n=3) had an approximately 30% increase in neuronal Ongoing work will examine MCA-6H63 staining after hyperoxia counts vs. sham (n=3). treatments. This work demonstrates the utility of serum NF-L as a biomarker axonal degeneration and suggests that normobaric hyperoxia treatments in the acute through sub-acute period may provide benefit.

Sponsored By: 1R01NS139422-01 (DDF); 1K99NS133388-01A (SR), 5T32HD043730-19 (DDF: PI; AFF: trainee), Frank M Davis Chairman Emeritus Grant (AFF)

Presenter Name and contact information:

David Fuller, Ph.D., Professor Department of Physical Therapy University of Florida Gainesville, Florida, USA Email: dfuller@phhp.ufl.edu

¹Physical Therapy Department, University of Florida

²McKnight Brain Institute, University of Florida

³Breathing Research and Therapeutics Center, University of Florida

⁴Center for Translational Research in Neurodegenerative Disease, University of Florida

⁵EnCor Biotechnology Inc. Gainesville, Florida

⁶Department of Neuroscience, University of Florida