Molecular pathways modifying progranulin deficiency phenotypes in mouse models

Cha Yang^{1,3*}, Huan Du^{1,3*}, Gwang Bin Lee⁵, Masaaki Uematsu^{2,3}, Etienne Doré⁴, Weizhi Yu^{2,3}, Ethan J. Sanford^{1,3}, Marcus B. Smolka^{1,3}, Eric Boilard⁴, Jeremy M. Baskin^{2,3}, Ling Hao⁵, and Fenghua Hu^{1,3#}

¹Department of Molecular Biology and Genetics, ²Department of Chemistry and Chemical Biology, ³Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA ⁴Centre de Recherche du Centre Hospitalier Universitaire de Québec, Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada ⁵Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA

Haploinsufficiency of the progranulin (PGRN) protein is a leading cause of frontotemporal lobar degeneration (FTLD). Mouse models have been developed to study PGRN functions. However, PGRN deficiency in the commonly used C56BL/6 mouse strain background leads to very mild phenotypes, and pathways regulating PGRN deficiency phenotypes remain to be elucidated. We generated PGRN-deficient mice in the FVB/N background and compared PGRN deficiency phenotypes between C56BL/6 and FVB/N backgrounds via immunostaining, western blot, RNA-seq, and proteomics approaches. We report that PGRN loss in the FVB/N mouse strain results in earlier onset and stronger FTLD-related and lysosome-related phenotypes. We found that PGRN interacts with sPLA2-IIA, a member of the secreted phospholipase A2 (sPLA2) family member and a key regulator of inflammation that is expressed in FVB/N but not C56BL/6 background. sPLA2-IIA inhibition rescues PGRN deficiency phenotypes, and sPLA2-IIA overexpression drives enhanced gliosis and lipofuscin accumulation in PGRN-deficient mice. Additionally, RNA-seq and proteomics analysis revealed that mitochondrial pathways are upregulated in the PGRN-deficient C57BL/6 mice but not in the FVB/N mice. In summary, our studies establish a better mouse model for FTLD-GRN and uncover novel pathways modifying PGRN deficiency phenotypes.

Sponsored by: NIH R01NS095954 to FH; NIH R01GM131101 to JMB, Weill Institute Fleming fellowship to CY, Human Frontier Science Program Long-Term Fellowship (LT0008/2022-L) and Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (202260374) to MU, and the Natural Sciences and Engineering Research Council of Canada to EB.

Presenter Name and contact information:

Fenghua Hu, Ph.D., Associate Professor Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA Email: fh87@cornell.edu