## Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains

Chengxuan Chen<sup>1,2,3\*</sup>, Zhao Zhang<sup>4,\*</sup>, Yuan Liu<sup>1,2,3,\*</sup>, Wei Hong<sup>4,\*</sup>, Hande Karahan<sup>5,6</sup>, Jun Wang<sup>7,8</sup>, Wenbo Li<sup>4,8</sup>, Lixia Diao<sup>9</sup>, Meichen Yu<sup>10,11,12</sup>, Andrew J. Saykin<sup>10,11,12</sup>, Kwangsik Nho<sup>10,11,13</sup>, Jungsu Kim<sup>5,6</sup>, Leng Han<sup>1,2,3,10,13,#</sup>. \*These authors contributed equally.

<sup>1</sup>Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA, 2Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA, Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA., Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA, 5Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA., Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202. USA., Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth, Houston, 77030, TX, USA, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA, 10 Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA., 11 Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA., 12 Indiana University Network Science Institute, Bloomington, IN, USA., 13 Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Alzheimer's disease (AD) is the most common dementia among the elderly with multiple underlying etiology. Although how protein-coding genes affect the onset and progression of AD has been investigated extensively, the role of non-coding RNAs (ncRNAs) and post-transcription regulation (PTM) events in AD pathogenesis remains largely unknown. Here we used 1,234 AD RNA-seg data across six brain regions from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study (MSBB) and Mayo cohorts with multiple AD traits. We comprehensively characterized the landscape of ncRNAs, such as 33,321 long ncRNAs (lncRNAs) and 106,990 enhancer RNAs (eRNAs), and PTM events including 127,403 alternative polyadenylation (APA) events and 900,207 A-to-I RNA editing events. We also identified 32,220 aberrantly expressed ncRNAs and altered PTM events along with AD traits. To explore the potential roles of ncRNAs and PTM events in AD, we identified 236,932 significant associations between ncRNAs/PTM events and proteincoding genes to build regulatory networks. Furthermore, we developed a user-friendly data portal, AD Atlas (https://hanlaboratory.com/AD atlas/), to facilitate users to browse, search, query, and download ncRNA and PTM events and their relevance in AD brains. Our study aims to establish a comprehensive data platform of ncRNAs and PTMs in AD, offering a valuable resource for the broader research community in the study of AD.

**Sponsored By:** This work was supported by the National Institutes of Health [R03AG070417, R01HG011633, and R01CA262623 to L.H., R01AG077829 to J.K., U01 AG072177, R01 LM012535, and U19AG074879 to K.N., R56HL142704, R01HL142704, K01DE026561, R03DE025873, R01DE029014 to J.W., P30 AG010133, P30 AG072976, R01 AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 AG068057, U01 AG072177, and U19 AG074879 to A.S, R01AG082132, R21GM132778, U01HL156059, R01GM136922 to W.L.]. W.L. also receives support from the Robert A. Welch foundation (AU-2000-20190330, AU-2000-20220331). Y. L. also received an award from the Ralph W. and Grace M. Showalter Research Trust and the Indiana University School of Medicine. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Funding Agency. This work used Jetstream2 at Indiana University through allocation MED230012 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.