Exploring Resilience to Alzheimer's Disease through the Lens of Down Syndrome

Peng Jiang¹, Mengmeng Jin¹, Ziyuan Ma¹, Rui Dang¹, Haiwei Zhang¹, Rachael Kim¹, Haipeng Xue², Jesse Pascual³, Ava V. Papetti¹, Steven Finkbeiner^{4,5}, Elizabeth Head³, Ying Liu²,

¹Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854. USA

²Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA

³Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA

⁴Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA 94158, USA

⁵Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA

Down syndrome (DS) is a leading genetic risk factor for Alzheimer's disease (AD), yet some individuals with DS exhibit cognitive resilience despite hallmark AD pathology. Interestingly, DS also confers heightened susceptibility to myeloid leukemia through somatic mutations in hematopoietic cells, mutations that may contribute to neuroprotection. Given that microglia originate from hematopoietic lineages and play central roles in AD pathogenesis, we hypothesize that DS-associated leukemia mutations in microglia may promote resilience to neurodegeneration. To test this, we introduced the DS-linked CSF2RB A455D mutation into human pluripotent stem cells (hPSCs) using CRISPR-Cas9. In human microglia chimeric mouse models, we demonstrate that this mutation mitigates pathological tau-induced neuroinflammation, enhances phagocytosis and autophagy, and reduces senescent and dystrophic microglial phenotypes. Remarkably, these engineered microglia preserve neuronal function and outcompete wild-type microglia in the presence of pathological tau. These findings establish proof-of-concept that genetic engineering of human microglia can confer resistance to tau-driven neurodegeneration, offering a potential strategy for therapeutic microglial replacement in AD.

Sponsored By: grant from NIH R01AG073779

Presenter Name and contact information:

Peng Jiang, Ph.D. Associate Professor Department of Cell Biology and Neuroscience Rutgers University-New Brunswick 604 Allison Road, Piscataway, NJ 08854 Email: peng.jiang@rutgers.edu

Phone: 848-445-2805