Association of Polygenic Risk Score for 5 Diseases with Alzheimer Disease Progression, Biomarkers, and Amyloid Deposition

Jingjing Liang¹, Sadiya Hussainy^{1,2}, Sara Michelle Lee^{1,2}, Mao Ding³, Heming Wang⁴, Bonnie LaFleur¹, George Perry⁵, for Alzheimer's Disease Neuroimaging Initiative (ADNI)

¹ Department of Pharmacy Practice and Science, University of Arizona, Tucson, USA; ² GIDP Genetics, University of Arizona, Tucson, USA; ³ Department of Pharmacology and Toxicology, University of Arizona, Tucson, USA; ⁴ Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA,⁵ Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, USA

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder influenced by both genetic and environmental factors. Conditions such as type 2 diabetes (T2D), cardiovascular disease, obesity, depression, and obstructive sleep apnea (OSA) have been associated with increased risk and progression of AD. To explore the role of genetic susceptibility to these comorbidities, a retrospective analysis was conducted using data from 752 non-Hispanic White participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with whole-genome sequencing data. Polygenic risk scores (PRSs) were generated for OSA, T2D, coronary artery disease (CAD), major depression, and body mass index (BMI). In a subset of 463 participants with mild cognitive impairment (MCI) at baseline, a higher OSA PRS—independent of BMI—was significantly associated with increased risk of progression to AD at both 3- and 5-year follow-ups. No significant associations were observed for PRSs related to T2D, CAD, depression, or BMI. Participants in the highest OSA PRS quartile showed greater PET amyloid burden, more rapid cognitive decline, and elevated levels of CSF amyloid-β42 (Aβ42), phosphorylated tau (p-tau), visinin-like protein 1 (VILIP-1), tumor necrosis factor receptor 1 (TNFR1), and plasma neurofilament light (NfL). These findings highlight a potential role for OSA-related genetic pathways in modifying AD pathophysiology and progression. However, the lack of objective OSA diagnoses and the modest sample size limit interpretation and call for further validation.

Sponsored By: Alzheimer's Association Research Grant 23AARG-1019863

Presenter Name and contact information:

Jingjing Liang, Ph.D., Assistant Professor Department of Pharmacy Practice and Science University of Arizona Tucson, Arizona, USA

Email: <u>iliang2@arizona.edu</u>