N-terminal truncation of TDP-43 drives splicing deficits and synergizes with C9orf72 in a mouse model of ALS/FTD

Lilian Lin¹, Ignacio Pozo-Cabanell¹, and Leonard Petrucelli¹

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are characterized by the nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 dysfunction is a pathological hallmark of approximately 97% of ALS and 50% of FTD cases, resulting in loss of its nuclear function, impaired RNA processing, and the accumulation of cryptic RNAs. While ALS/FTD is a diverse spectrum of disease with many overlapping and distinct underlying mechanisms, the most common genetic cause of ALS/FTD is the presence of hexanucleotide repeat expansions (HREs) in chromosome 9 open reading frame 72 (C9orf72). In C9orf72-ALS/FTD, repeat-associated non-AUG (RAN) translation of these HREs generates toxic dipeptide repeat proteins (DPRs), which often colocalize with hyperphosphorylated cytoplasmic TDP-43 aggregates, suggesting a pathological synergy. We generated a knock-in Tdp-43 mouse model utilizing CRISPR-mediated genome editing to delete the extreme N-terminal amino acids 2-9 (Tdp- $43_{\Delta 2-9}$), disrupting TDP-43 stability, homodimerization, and splicing function, promoting its mislocalization. To evaluate the synergistic toxicity of TDP-43 dysfunction and DPRs, we injected neonatal Tdp- $43_{\Delta 2-9}$ pups (P0) intracerebroventricularly (i.c.v.) with adeno-associated virus expressing 149 C9orf72 HRE repeats (C9orf72-149R). Tdp- $43_{\Delta 2-9}$ mice demonstrated impaired RNA splicing by 12 months of age, although no overt behavioral deficits were observed. In contrast, Tdp-43_{\(\text{\gamma}\)2-9 mice} injected with C9orf72-149R exhibited lower grip strength, increased pTDP-43 and DPR burden, and increased C9orf72 expression at 6 months of age. Strikingly, these neuropathological hallmarks and behavioral deficits were accompanied by elevated neurofilament light chain (NfL) levels, indicating neurodegeneration. Together, these findings support a convergent two-hit mechanism underlying ALS/FTD pathogenesis.

Presenter Name and contact information:

Lilian Lin, PhD
Department of Neuroscience
Mayo Clinic Jacksonville
Jacksonville, Florida, USA
Email: lin.tsai-wei@mayo.edu
&

Ignacio Pozo-Cabanell, MSc Department of Neuroscience Mayo Clinic Jacksonville Jacksonville, Florida, USA

Email: pozocabanell.ignacio@mayo.edu

¹ Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA