The Role of Metaxin 2 in Neurodegenerative Tauopathies

Kyle McGill Percy¹, Di Hu^{1,2} and Xin Qi^{1,2}

¹Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. ²Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA

Alzheimer's disease (AD) affects 6.2 million individuals in the United States and represents a significant neurodegenerative challenge. Tauopathies, characterized by tau protein aggregation neurons, contribute substantially to AD pathology. **Tauopathies** hyperphosphorylation-induced tau detachment from microtubules, leading to tau aggregate formation and neuronal demise. Mitochondrial dysfunction has emerged as a critical factor in tauopathy, preceding tau aggregation and impacting neuronal health. Despite this association, the mechanisms underlying Tau-mitochondria interaction remain unclear. Here, we identify Metaxin 2 (MTX2) as a novel factor implicated in tauopathy. Unbiased proteomic analysis of hippocampal tissue from PS19 transgenic mice revealed significant upregulation of MTX2 at both early (6-month) and late (9-month) disease stages. Immunohistochemistry confirmed elevated MTX2 levels in both PS19 mice and post-mortem AD patient hippocampi. In vitro, MTX2 upregulation was also observed in HT-22 cells expressing mutant Tau P301L. Proximity Ligation Assays revealed a close spatial association between phosphorylated tau (AT8) and MTX2, suggesting interaction. Functional studies demonstrated that MTX2 knockdown mitigates tauinduced mitochondrial oxidative stress and reduces tau aggregation, as shown by MitoSOX and tau BiFC assays, respectively. Successful completion of this study will establish MTX2 as a crucial player linking mitochondrial dysfunction to neurodegeneration in tauopathy. Furthermore, our findings may identify MTX2 as a novel therapeutic target for ameliorating neuronal toxicity in AD and related tauopathies.

Sponsored By: grant from NIH R01AG065240, R01NS115903, R01AG076051 & RF1AG074346

Presenter Name and contact information:

Kyle McGill Percy, M.S., PhD Candidate Department of Physiology & Biophysics Case Western Reserve University School of Medicine Cleveland, Ohio, USA Email: kcm78@case.edu