Poly-glycine-arginine pathology and *CASP8* intronic expansion variants in Alzheimer's disease

Huong T. Phuong^{1,2}, Rodrigo F. Tomas^{1,2}, Ramadan Ajredini^{1,2}, Svitlana Yegorova^{1,2}, Shu Guo^{1,2}, Logan Bell^{1,2}, Cemal Akmese^{1,2}, Ana Mijares^{1,2}, Jennifer Phillips^{3,4}, Alexandra Melloni⁵, Juan C. Tronscoso⁶, H. Brent Clark⁷, Bradley Hyman⁵, Stefan Prokop^{3,4,8,9,10}, Laura P. W. Ranum^{1,2,4,8,10,11*}, Lien Nguyen^{1,2,4,8,10,11*}

¹Center for Neuro*G*enetics, University of Florida, Gainesville, FL. ²Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL. ³Department of Pathology, Immunology and Laboratory Medicine, University of Florida Gainesville, FL. ⁴Center for Translation Research in Neurodegenerative Disease, University of Florida, Gainesville, FL. ⁵Mass General Institute for Neurodegenerative Disease, MA General Hospital, Boston, MA. ⁵Department of Pathology, Johns Hopkins University School of Medicine, Maryland, Baltimore. ¹Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, MN. ⁵McKnight Brain Institute, University of Florida, FL. ¹Department of Neurology, University of Florida, Gainesville, FL. ¹Onorman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL. ¹Department of Florida, Gainesville, FL. ¹Department

Alzheimer's disease (AD) is characterized by progressive cognitive decline and affects >10% of people older than 65 years of age. However, the underlying mechanisms of most forms of AD are unclear. Here we show poly-glycine-arginine positive (polyGR+) aggregates are frequently found in postmortem sporadic AD brains but not in age-similar controls in three cohorts of AD and control cases. PolyGR+ aggregates are strongly associated with disease neuropathological hallmarks, including Aβ plagues, phosphorylated Tau tangles, and neuritic plagues. Levels of polyGR+ aggregates are elevated in AD cases who experienced high blood pressure or brain injuries. Transcriptomic analysis shows neurogenesis and oligodendrocytes related pathways are dysregulated in polyGR+ AD brains. To identify putative repeat expansion mutations that express polyGR-containing proteins, we developed and used a repeat pulldown assay to isolate an interrupted (GGGAGA)n intronic expansion located within a SINE-VNTR-Alu (SVA) element in CASP8 (CASP8-GGGAGAEXP). Immunostaining using anti-polyGR and locus-specific Cthe *CASP8*-GGGAGA^{EXP} antibodies demonstrates that expresses terminal poly(GR)n(GE)n(RE)n proteins that accumulate in CASP8-GGGAGAEXP(+) AD brains. In cells, expression of CASP8-GGGAGAEXP minigenes leads to increased p-Tau levels. Consistent with other types of repeat associated non-AUG (RAN) proteins, poly(GR)n(GE)n(RE)n levels are increased by stress which in turns increase pTau levels. Association studies show that specific interrupted CASP8 sequence variants increase AD risk (CASP8-GGGAGA-AD-R1; OR 2.2, 95% CI [1.5185-3.1896], $p = 3.1 \times 10^{-5}$). Cells transfected with a high-risk CASP8-GGGAGA-AD-R1 variant show increased toxicity and increased levels of poly(GR)n(GE)n(RE)n aggregates. Taken together, these data identify polyGR+ aggregates and CASP8-GGGAGAEXP alleles are important factors in AD.

Sponsored by: NIH RF1NS126536, K99AG065511, and R00AG065511, P30 AG0066507DOD, P30AG066506, P50AG047266, DOD W81XWH2210592, UF McKnight Brain Institute, and McJunkin Family Foundation.

Presenter Name and contact information:

Lien Nguyen, Ph.D., Assistant Professor Center for NeuroGenetics, Dept of Molecular Genetics and Microbiology College of Medicine, University of Florida Gainesville, Florida

Email: lien.nguyen@ufl.edu