Comparative seeding of Multiple System Atrophy brain regions

Stephan Quintin^{1,2}, Kimberly-Marie Gorion^{1,2}, Brach Bell^{1,2}, Stefan Prokop^{1,2,3,4}, Benoit Giasson^{1,2}

¹ Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA.² Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA. ³ Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA. ⁴ Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, Florida, USA.

Alpha-synuclein is normally an abundant and soluble protein in the central nervous system, however, its aggregation is a hallmark of several neurodegenerative disorders such as Multiple System Atrophy (MSA) and Lewy Body disease. The induction of aggregation and propagation of alpha-synuclein pathology can be studied experimentally using pathogenic seeds derived from human disease tissue or synthetic alpha-synuclein fibrils. It has been demonstrated that the source of these seeds influences the characteristics and distribution of the resulting pathology in disease models. We have previously shown using a transgenic mouse model expressing human alphasynuclein that the pathology induced by MSA brain lysate differs in potency and distribution from that induced by recombinant alpha-synuclein fibrils. This finding suggests strain-like properties of alpha-synuclein seeds and has prompted further investigation into brain tissue-derived seeding to model disease-relevant processes. In the present study, we make a novel comparison of seeds derived from distinct brain regions within MSA cases. The cerebellum and pons are two regions critically affected in MSA, each exhibiting distinct cell-type-specific distributions of pathology. By comparing seeding activity between these regions, we aim to understand how region-specific pathology influences seed potency and the spread of induced pathology. These findings provide insights into the determinants of alpha-synuclein seeding behavior and the development of more precise models of alpha-synuclein pathology.

Sponsored By: T32NS082168 training grant from National Institute of Neurological Disorders, R01NS100876 from National Institute of Neurological Disorders

Presenter Name and contact information:

Stephan Quintin GS3
Department of Neuroscience
University of Florida School of Medicine
Gainesville, Florida, USA

Email: squintin@ufl.edu