Neurons and glial cells differentially metabolize internalized α -synuclein fibrils: Relevance to the propagation of α -synuclein pathology

 $\underline{\text{Md Razaul Karim}^{a,b,c}}$, Elizabeth Tiegs a,b,c , Emilie Gasparini a,b , Riley Schlichte a,b,c , Scott C. Vermilyea a,b,c , and Michael K. Lee a,b,c

^aDepartment of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA ^bInstitute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA ^cAligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD

Abstract (250 words)

Parkinson's disease (PD) and other α -synucleinopathies are characterized by the α -synuclein (αS) aggregates that spread via the cell-to-cell transmission. We studied the contributions of various brain cells to the spreading of αS pathology by examining the metabolism of αS aggregates in neuronal and glial cells. In neurons, the full-length αS rapidly disappeared following α S PFF uptake but truncated α S accumulates with a half-life of days. Epitope mapping and fractionation studies indicate that internalized αS fibrils are truncated at the C-terminal region and remained insoluble in neurons. In contrast, microglia and astrocytes rapidly metabolized aS fibrils as the half-lives of αS fibrils in these glial cells were <6 hours. Differential uptake and processing of α S fibrils by neurons and dia was recapitulated in vivo where injection of fluorescently labeled as fibrils initially accumulated in glial cells followed by rapid clearance while neurons stably accumulated αS fibrils at slower rate. Immunolocalization and subcellular fractionation studies show that internalized αS PFF is initially localized to endosomes followed by lysosomes. The lysosome is largely responsible for the degradation of internalized αS PFF as the inhibition of lysosomal function leads to the stabilization of α S in all cell types. Significantly, α S PFF causes lysosomal dysfunction in neurons. In summary, neurons are inefficient in metabolizing internalized α S aggregates, partially because α S aggregates cause lysosomal dysfunction, potentially generating aggregation-prone truncated αS . In contrast, glial cells may protect neurons from αS aggregates by rapidly clearing α S aggregates.

Supported by grants to MKL from NIH and ASAP.

Presenter Name and contact information:

Md Razaul Karim, Ph.D.
Department of Neuroscience,
University of Minnesota, Minneapolis, MN 55455
Email: karimr@umn.edu