Decoding Common and Rare Variant Associations in Alzheimer's Disease Using Deep Learning

Tatsuhiko Naito¹, Jack Humphrey¹, Anjali Das², Chirag Lakhani², David A. Knowles², Towfique Raj¹

¹Icahn School of Medicine at Mount Sinai, New York, NY, USA. ² New York Genome Center, New York, NY, USA

Interpreting the role of genetic variants in Alzheimer's disease (AD) is challenging due to limited functional specificity across brain cell types. To address this, we developed deep learning models trained on human microglia RNA-seg data to predict the regulatory impact of non-coding variants on splicing and gene expression. We introduced the Splicing Modifier Score (SMS) to improve finemapped splicing QTL (sQTL) prediction, validated using isoMiGA, a long-read isoform atlas of human microglia that identified over 35,000 novel context-specific isoforms. To enhance rare variant interpretation, we also developed Gruyere, a Bayesian framework that learns trait-specific weights across functional annotations. Applied to whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (7,966 cases, 13,412 controls), Gruyere uncovered 10 novel ADassociated loci, including TREM2, not identified by other rare variant tests. Our deep learning models achieved high predictive accuracy for splicing in microglia (PR-AUC = 0.853), and delta scores effectively prioritized fine-mapped sQTLs (ROC-AUC = 0.656). Several fine-mapped variants were functionally validated using MPRA in iPSC-derived microglia. Integration with MiGA's longread splicing QTL map revealed that key AD loci—including CD33, PLCG2, PILRA, and MS4A6A are likely mediated through isoform-level regulation. Together, these results establish a framework for brain cell type-specific functional variant interpretation and provide a powerful approach for identifying novel regulatory mechanisms for AD.

Sponsored By: grants from NIH U01-AG068880, R01-AG065926 and BrightFocus Foundation

Presenter Name and contact information:

Towfique Raj, PhD, Professor

Ronald M. Loeb Center for Alzheimer's Disease,

Departments of Neuroscience, and Genetics and Genomic Sciences, and Artificial Intelligence and Human Health

Icahn School of Medicine at Mount Sinai 1425 Madison Avenue, Icahn 10-70E New York, NY 10029

T: 212-659-5648

E: towfique.raj@mssm.edu