Cell type-specific biotin labeling *in vivo* resolves regional neuronal proteomic differences in mouse brain

Sruti Rayaprolu¹, Sara Bitarafan⁴, Juliet Santiago^{2,3}, Ranjita Betarbet², Sydney Sunna^{2,3}, Lihong Cheng^{2,3}, Hailian Xiao^{2,3}, Ruth Nelson⁶, Prateek Kumar⁶, Pritha Bagchi^{2,3}, Duc M. Duong^{2,3}, Annie M. Goettemoeller⁵, Viktor János Oláh⁵, Matt Rowan⁵, Allan I. Levey², Levi B. Wood⁴, Nicholas T. Seyfried³, Srikant Rangaraju⁶

¹Department of Neurology, University of Florida, Gainesville, FL 32607, USA. ²Department of Neurology, Emory University, Atlanta, GA 30322, USA. ³Department of Biochemistry, Emory University, Atlanta, GA 30322, USA. ⁴Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA. ⁵Department of Cell Biology, Emory University, Atlanta, GA 30322, USA, ⁶Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA

Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We generated a novel mouse line for cell type-specific expression of biotin ligase TurbolD, leading to in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show striking protein biotinylation in neuronal soma and axons throughout the brain and quantified over 2,000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we compared Camk2a-neuron and Aldh1I1-astrocyte proteomes, and resolved brain region-specific proteomic differences within neurons, some of which may underlie selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we used an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states.

Presenter Name and contact information:

Sruti Rayaprolu, Ph.D., Associate Scientist
Department of Neurology
Center for Translational Research in Neurodegenerative Diseases
1Florda Alzheimer's Disease Research Center
University of Florida, College of Medicine
Gainesville, FL, USA

Email: sruti.rayaprolu@ufl.edu