TDP-43 subtypes shape transcriptomic signatures of FTLD and AD

Alyssa C. Walker¹, Madison Reeves¹, Candela Morato Cidfuentes¹, Jesus Gonzalez Bejarano¹, Yuping Song¹, Judy Dunmore¹, Bailey Rawlinson¹, Michael DeTure¹, Neil R. Graff-Radford², Bradley F. Boeve³, Ronald C. Peterson³, Björn Oskarsson², Dennis W. Dickson¹, Keith A. Josephs³, Mercedes Prudencio¹

¹Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA.. ²Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA.. ³Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.

Pathological inclusions of TAR DNA-binding protein 43 (TDP-43) are associated with a spectrum of neurodegenerative diseases that lack effective treatments or cures. While the role of TDP-43 in frontotemporal lobar degeneration (FTLD-TDP) is well established, with subtypes A–E defined by distinct neuropathological patterns, emerging evidence indicates that TDP-43 pathology also contributes to Alzheimer's disease (AD), where it is classified as α or β subtypes. TDP-43 subtypes differ in regional brain involvement, association with other proteinopathies, and may ultimately impact clinical outcomes and therapeutic response. In our previous work, we identified similar levels of TDP-43 dysfunction in the amygdala of both AD and FTLD-TDP, with frontal cortex involvement unique to FTLD-TDP; however, the molecular consequences of the different TDP-43 subtypes in these regions remain poorly understood. Thus, we performed RNA sequencing from the amygdala and frontal cortex of FTLD-TDP (types A and B), AD with TDP-43 pathology (types α and β), AD with no TDP-43 pathology and cognitively-normal control brains to define the transcriptomic signatures associated with each disease and TDP-43 subtype. Indeed, our analysis revealed distinct, subtype-specific transcriptomic alterations, highlighting the molecular heterogeneity driven by TDP-43 dysfunction. These findings underscore the importance of precise TDP-43 subtype classification for advancing our understanding of neurodegenerative disease mechanisms and guiding the development of targeted therapeutics.

Sponsored by:

NIH R01 NS120992, NIH U54NS123743, Target ALS, BrightFocus Foundation

Presenter name and contact information:

Alyssa Walker, Ph.D., Post-doctoral research fellow Department of Neuroscience Mayo Clinic Jacksonville, Florida, USA Email: walker.alyssa@mayo.edu