AIF3 splicing variant elicits mitochondrial malfunction and neurodegeneration via the concurrent dysregulation of electron transport chain and glutathione-redox homeostasis

Mi Zhou^{#1}, Shuiqiao Liu^{#1}, Yanan Wang¹, Bo Zhang¹, Ming Zhu¹, Jennifer E Wang¹, Veena Rajaram¹, Yisheng Fang¹, Weibo Luo¹², Yingfei Wang³⁴⁵

Genetic mutations in apoptosis-inducing factor (AIF) have a strong association with mitochondrial disorders; however, little is known about the aberrant splicing variants in affected patients and how these variants contribute to mitochondrial dysfunction, brain development defects and/or neurodegeneration. We identified pathologic AIF3/AIF3-like splicing variants in postmortem brain tissues of pediatric individuals with mitochondrial disorders. Mutations in AIFM1 exon-2/3 increase splicing risks. AIF3-splicing disrupts mitochondrial complexes, membrane potential, and respiration, causing brain development defects and neurodegeneration in aging-related diseases. Mechanistically, AIF is a mammalian NAD(P)H dehydrogenase and possesses glutathione reductase activity controlling respiratory chain functions and glutathione regeneration. Conversely, AIF3, lacking these activities, disassembles mitochondrial complexes, increases ROS generation, and simultaneously hinders antioxidant defense. Expression of NADH dehydrogenase NDI1 restores mitochondrial functions partially and protects neurons in AIF3-splicing mice. Our findings unveil an underrated role of AIF as a mammalian mitochondrial complex-I alternative NAD(P)H dehydrogenase and provide insights into pathologic AIF-variants in mitochondrial disorders and related neurological diseases.

Sponsored By: grants from NIH R01AG066166, R01AG079094, R35GM124693, R00NS078049

Presenter Name and contact information:

Yingfei Wang Ph.D.
Associate Professor
Departments of Pathology | Neurology
Investigator
Peter O'Donnell Jr. Brain Institute
UT Southwestern Medical Center
Dallas. Texas. USA

Email: yingfei.wang@utsouthwestern.edu

¹Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

²Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.

³Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Yingfei.Wang@UTsouthwestern.edu.

⁴Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA. Yingfei.Wang@UTsouthwestern.edu.

⁵Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA. Yingfei.Wang@UTsouthwestern.edu.

^{*}Contributed equally.